
Journal of Applied Mechanics and Techntcal Physics, Vol. 38, No. 3, 1997 

M O D E L I N G  OF T H E  P E N E T R A T I O N  OF A S U P E R C R I T I C A L  

M A G N E T I C  F I E L D  I N T O  A T Y P E  II  S U P E R C O N D U C T O R  

A N D  T H E  E L E C T R O M A G N E T I C  R A D I A T I O N  G E N E R A T E D  T H E R E B Y  

A. B. Pr ischepenko,  1 A. A. Barmin,  2 and O. l~ Mel 'nik 2 UDC 537.872.3 

Traditional superhigh-frequency (SHF) vacuum electronic devices show rather limited possibilities of 
extending the spectrum of the generated-radiation (usually, marked power levels are observed at frequencies 
that differ from the main frequency by not more than 10-20%). The frequency range of the generated SHF 
radiation can be extended only using a fundamentally new element basis, commutating high-speed elements 
playing a primary role. 

In the present paper, we consider the physical principles of operation of a superwide-band radiation 
source which uses a type II superconductor - -  an annular layer of YBa2Cu307 ceramic. Most of the 
electromagnetic radiation is generated when a magnetic field emerges from the superconductor. 

This process is described using the generalized London brothers equations [1], but, in contrast to the 
classical theory, it is assumed that the number of superconducting electrons is not constant but depends on 
the magnetic field and temperature. This dependence is obtained from the experimental data of [2]. The 
proposed model is used to analyze numerically the penetration of a magnetic field into a hollow cylindrical 
superconductor, the propagation of the zone of loss of superconducting properties, and the emergence of 
the field from the superconductor. The power and spectrum of the generated electromagnetic radiation are 
estimated from the current distribution in the superconductor using the theory of a wave oscillator [3]. The 
results obtained axe compared with the experiment. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  As an external magnetic field reaches a critical magnitude B*, it 
penetrates almost instantaneously into type I superconductors, among which are almost all pure metals (the 
thickness of the transient region is of the order of L0 - -  the characteristic dimension of the Cooper pair). 

Modern high-temperature superconductors are among type II superconductors. A magnetic field 
penetrates gradually into them (there is a region with width 6 in which a magnetic field exists). When 

6/Lo >> 1, the theory of [1] gives the penetration depth ~L = ~/mc~/(4~rne2), where rn, e, and n are the 
electron mass, charge, and density. It is assumed in this theory that all electrons are in a superconducting 
state. In reality, along with superconducting electrons with concentration ns, normal electrons are also present 
in the transient region. The closer the magnetic-field intensity or the temperature to their critical values, the 
higher the concentration of the normal electrons nn. Thus, the electric current can be regarded as two parallel 
currents due to superconducting and normal electrons. In this case, the generalized London brothers equations 
[1] has the form 

0B c 0Vs 
Ot + c r o t E = O ,  j=4- - -~ ro tB ,  j = j n + j s ,  m--~-~--=eE, 

(1.1) 
L = j .  =  0(1 - = 

Here B and E are the intensities of the magnetic and electric fields, j is the current density; Vs is the 
velocity of superconducting electrons; the subscripts n and s refer to the normal and superconducting states, 
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respectively. Relations (1.1) represent the Maxwell equations, the condition of parallel currents, and Ohm's 
laws for normal and superconducting electrons. 

To close system (1.1), it is necessary to specify the dependence c~ = ~ ( B , T ) .  The dependence of 
the resistivity p of superconductor  YBa2Cu307 on the magni tude of magnetic field for various temperatures 
lower than the critical tempera ture  is given in [2]. Assuming that  p ( B , T )  = (1 - c ~ ( B , T ) ) p o  we obtain 
c~ = 1 - p (B ,  T) /po  (p0 = 0.3 ml2-cm). A characteristic feature of type lI superconductors is the existence 
of two critical fields; the lower B[ and the upper B~ fields. If the magnetic-field intensity is lower than the 
lower critical value, the material  behaves as a pure superconductor,  which corresponds to c~ = 1. If the field is 
higher than the upper  critical field, we have (~ = 0, and the material is a normal conductor.  In the transient 
region, the dependence c~(B) is well approximated by the formula 

a, + a 2 ( B -  b) - (a2 + 1)(B - b) 2 

al + a2( B - b) - a3( B - b) 2 ' 

where B is the ratio of the magnetic-field intensity to the upper critical value, b is the dimensionless critical 
field, and the parameters ai are determined by the body temperature .  

To est imate the possible increase in temperature  caused by Joule heating of the superconductor,  we 
use the energy-balance equation. Ignoring heat-conduction processes (which are much slower), we write this 
equation as 

OT 
p c - ~  = (r0(1 - a ) E  2. (1.2) 

In the cMculations, we shMl est imate the temperature  variation from currents. 
We consider the following one-dimensional problem. Let a superconductor be an infinite hollow cylinder 

with outside radius re and inside radius ri. We assume tha t  the distribution of electromagnetic fields inside 
the cylinder is described by the  Maxwell equations for vacuum, and, inside the cylinder, it is described by 
Eq. (1.1). A magnet ic  field B = B ( t )  parallel to the cylinder axis is specified at the external  boundary of the 
cylinder. At the initial t ime, the  field was absent: B(r ,  O) = 0 (0 <~ r <. re). For r = ri, we assume continuity 
of the electric and magnet ic  fields, which corresponds to the  absence of surface currents and charges, and, for 
r = 0, the fields axe considered finite. 

The  problem reduces to integration of two systems of one-dimensional nonstat ionary equations in 
partial derivatives, conjugated at the motionless boundary r = ri by the field-continuity condition. System 
(1.1) is parabolic, and the Maxwell equations for vacuum are hyperbolic. 

The  problem was solved numerically. The  conserwtive scheme of [4] was used to write only nonexplicit 
difference analogs of the  system. Then,  matr ix  coefficients were processed in the directions from the boundaries 
to r - 0 and r - re, and the  magni tudes  of fields at the externM boundary of the superconductor  were 
determined from these coefficients and the boundary conditions at r = ri. FinMly, the distr ibution over the 
entire calculation domain was found by inverse processing. The  accuracy of the difference approximation is of 
order It, h2], and the scheme is absolutely stable in this case. 

To characterize the penetra t ion of the field into the superconductor,  we introduce the quantit ies A1 = 
r(B~)  and A2 = r(B~) (r is the  distance from the boundary of the superconductor),  and also the mean value 
of field penetrat ion )~ 

r e  

- A(r0 - (1/2)A)B0 = / B( r ) r  A dr. 
r 1 

Using system (1.1) when B0 < 1, for A we obtain 

t t ]~ A(t) = e - '  1 (0B3 ,t,-, ,- ,tt. 
j ~ = l-c~ 

ro o 
(1.3) 

Here the subscript zero refers to the value at the boundary of the superconductor (r = re). As t --* ~ ,  we 
have dA/dt  -:* O, and, hence, there is a limiting profile which is nearly exponential at large distances from the 
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boundary. According to (1.3), the function A is finite and increases with increase in B0. 
2. P e n e t r a t i o n  of  a M a g n e t i c  F i e ld  in to  t h e  S u p e r c o n d u c t o r .  We study the penetrat ion of a 

magnetic field into the hollow cylindrical superconductor as a function of the applied magnetic  field at the 
boundary B0 and its variation. If B0 > B~, the foUowing three regions are formed: 

I - -  the superconduct ing region (r > AI), 
II - -  the region of mixed conduction (A1 > r > A2), 
I I I - -  the region of normal  electrical conduction. 
The  quant i ty  A increases continuously. For ]7o = B~, we have A ~ ln t and, for B0 > B~, we have 

A ~ t *(B0), and 7 --~ 0.5 with increase in B0. This shows that  the determining process is the field penetration 
into the region of normal  conduction,  in which the process is described by the ordinary heat conduction 
equation. 

As the law of variation of the field at the external boundary of the cylinder, we assume B(re, t) = 
(2/~r)B0 arctan(wt).  

The  quant i ty  w = co corresponds to instantaneous specification of the max imum magni tude of field. 
Here and below, dimensionless quantit ies are used unless dimension is indicated explicitly. The  magnetic-field 
intensity is divided by the upper  critical value, i.e., B~ = 1, the t ime is divided by r i /c ,  the distance for 
ri ~< r ~< re, including Xl, A2, and A, is divided by Ar  = ri - re, and, for r < ri, i.e., for vacuum, it is divided 
by ri, the current density is divided by B~c/Ar ,  and the magnetic  moment  of the system of currents is divided 
byB~c lAr  4. 

Figure 1 gives magnetic-field and current-density profiles for w = 0.1 for ]7o = 2 (the dashed curves 
show the profiles after reflection of the wave from the center). Here, for 0 < r < 1, we have vacuum, and, for 
1 ~< r ~< 2, we have the conducting material. As long as B(re, t) < 1, the value of A1 is of the order of several 
London length and increases slowly with increase in field, and the current flows in a narrow region near the 
boundary. As soon as B(re,  t) > 1, the penetrat ion depth  increases suddenly, and the three regions indicated 
above are formed. The  main current flows in region II, which can be regarded as the wave due to loss of 
superconductivity. In region III, the current decays rapidly because of ohmic losses. The est imate obtained by 
Eq. (1.2) shows that  a considerable increase in tempera ture  occurs only in region III, and does not markedly 
affect the transit ion from the superconducting to the normal state. 

The  curves of A1 (t), A2 (t) and A (the solid, dashed, and dot-and-dashed curves,  respectively) for w = 0.1 
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B0 = 1.5, 2, and 5 are given in Fig. 2 (curves 1-3). With increase in B0, the time of loss of superconductivity 
in the cylindrical layer increases due to both the later attainment of the value B = 1 at the boundary and 
increase in dAJdt. The width of the region of mixed conduction increases in this case. A decrease in w leads 
to similar results. 

In the initial region, the field-penetration depth chmages primarily because of the propagation of the 
wave due to loss of superconductivity. As the front reaches the boundary of the conducting material, the 
penetration depth is determined by normal conductivity. 

Table 1 gives the times of loss of superconductivity in the ring considered versus the rate of increase in 
intensity at the field boundary and versus the maximum magnitude of the field. The times tl  and t2 correspond 
to the attainment of the upper critical field at the internal and external boundary of the superconductor, 
respectively. 

When region II disappears, the magnetic-field intensity at the internal boundary increases suddenly to 
the value -,,B~. This change in field,propagates in the nonconducting region as electromagnetic waves reflected 
from the center of the conducting c~ylinder. In the chosen geometry, the time of the sudden change in field at 
the boundary is equal to 2-3 units of dimensionless time. 

Figure 3 shows the variation in intensity at the center B(0) versus t for w = 0.1 and B0 = 5, 2, 
and 1.5 (curves 1-3). The initial fluctuations are induced by wave reflection, and then the field approaches 
asymptotically the applied external field B0. The maximum value in the first peak exceeds B(ri) by a factor 
of 1.5-3, depending on w, and can be smaller than B0. The latter is caused by the delayed penetration of the 
field through the conducting layer. Hence, strong compression of the field is impossible because of the loss of 
superconductivity. 

3. S u p e r w i d e - B a n d  Source  of  S H F  Rad ia t i on .  The calculations performed were used to explain 
the principles of operation of an .SHF radiation source .with a continuous frequency spectrum covering 
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frequencies from fractions to tens of gigahertz. 
The source developed by A. B. Prischepenko is shown schematically in Fig. 4, where 1 is the annular 

layer of superconducting YBa2Cu307 ceramic, 2 is the coil producing a pulsed magnetic field, 3 is the heat- 
insulated cuvette, 4 is liquid nitrogen, and 5 is the pulsed electric current generator. An oscillogram of the 
coil current is shown in Fig. 5. The time distance between points is 50 nsec, and the maximum amplitude is 
25 kA. The change in magnetic field inside the coil is proportional to the current. 

The moment of current in the superconductor is of importance for an understanding of the radiation 
mechanism. For a unit length of the cylindrical specimen, it can be written as 

r0  

ri 

Figure 6 shows the variation in the moment of current M versus time t for w = 0.1 and B0 = 1.5, 2, 
and 5 (curves 1--3). In the initial stage, M increases due to change in Be, since the value )~/ro is small, and 
B(ri) = 0. When region II reaches ri, the second term begins to grow rapidly, leading to an abrupt drop in 
M(t). 

Specifically, this drop is determined primarily by the rate of change of Bi, which, as noted above, 
depends only slightly on the rate of change of field at the external boundary. After complete loss of 
superconductivity, the processes are determined by the usual diffusion, and the change of M(t) is suddenly 
decelerated, Note that M"(t) changes sign. Such behavior of M(t) explains why this system is an effective 

335 



radiator of electromagnetic waves. 
To estimate the power, we calculated the resulting electromagnetic radiation as the emission of a 

magnetic dipole with specified magnetic moment [3]. Plots of the radiation power S(t) are given in Fig. 7 for 
w = 1 and B0 = 5, 2, and 1.5 (curves I-3) and for w = 0.1 and B0 = 5 and 2 (curves 4 and 5). 

The maximum radiation power decreases with decrease in B0, and the rate of increase in the external 
field w has a weaker effect (see curves 1 and 4 in Fig. 7 and Table 2). The drop in the radiation peak 
corresponds to the change of sign of M"(t). The duration of the main radiation pulse is ~0.8 nsec for B0 = 5 
and 2.7 nsec for B0 = 1.5. It increases with decrease in B0, and this is associated with a decrease in the 
current-wave velocity. The radiation caused by increase in the external field is determined by the rate of its 
change, and, for the processes considered, it is several orders smaller than the maximum. Thus, for w = 1 and 
B0 = 5 (curve 1), it amounts to 1% of the main maximum. 

Table 2 gives values of the maximum radiation power S for the variants considered above. For the 
case of w = oo, the given value corresponds to the emergence of a current wave from the conductor. The 
more stronger dependence of the radiation power on w for B0 = 5 is due to the fact that, at the moment the 
current wave emerges from the superconductor and enters vacuum, the magnitude of the field at its external 
boundary is the larger, the greater w. 

The calculations performed suggest that the radiation generated by an annular superconducting 
commutator is caused by the sudden change in its magnetic moment with the loss of superconductivity 
over the entire volume of the superconductor. 

The proposed radiation mechanism is supported by a comparison of the calculated spectrum with the 
experimental one obtained using the setup described above. The spectral radiation power S ~ was measured by 
means of a four-channel spectrometer with transmission bands of 70 MHz for each of the channels, produced 
in the laboratory. The resolution time of peak detectors is 10 nsec. The measurement accuracy is estimated 
at 4-25%. 

Figure 8 shows the radiation spectrum for w = 0.1 and B0 = 2 and 5 (solid and dashed curves). 
The agreement between the calculation and experimental data (vertical bars) is satisfactory if one takes into 
account the model character of the calculation scheme. The frequency range is shifted to higher values of w 
with increase in B0. 

Thus, the electromagnetic radiation observed experimentally with loss of superconductivity under the 
action of a pulse of the magnetic field in a superwide-band SHF radiation source is explained on the basis 
of a phenomenologicM model that  is an extension of the London theory with allowance for the experimental 
dependence of superconducting electrons on magnetic-field intensity. 
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